

## **Final Surveillance Report**

## **Covering the period of March 2020 to March 2023**

The end of March 2023 was a milestone at the Better Outcomes Registry & Network (BORN) as it concluded our 3-year odyssey with COVID-19. While the pandemic continues, our COVID-19 data collection and analysis activities are winding down.

Care providers for pregnant individuals and their newborns and health system planners/funders worked collaboratively with BORN to provide critical data to help us learn about the effects of COVID-19 on pregnancy, labour and birth, and the early newborn period as well as the system outcomes. We also worked with researchers to explore the effects of COVID-19 vaccination once it became available. The information and findings were shared provincially, nationally, and internationally to add to scientific knowledge and conclusions drawn. Throughout the process we gained new knowledge that contributed to BORN's mandate to facilitate and improve care in Ontario.

This report summarizes BORN's **Top 5 learnings** about the effects of COVID-19 on pregnant individuals and their newborns and the activities that led to these conclusions. We also conclude with recommendations for future infectious disease outbreaks or pandemics.

## **Top 5 learnings:**

- 1) Pregnant individuals had higher rates of illness, hospitalization and ICU admission associated with COVID-19 infection than non-pregnant individuals in the same age range.
- 2) Newborns of pregnant individuals with COVID -19 were more likely born preterm (<37 weeks' gestation) compared to the general population of pregnant individuals.
- 3) Vaccination against COVID-19 administered during pregnancy has **NOT** been associated with an increased risk of adverse pregnancy or birth outcomes. Nevertheless, COVID-19 vaccine coverage in the pregnant population remained lower than in the general female population of reproductive age.
- 4) During public health emergencies, accurate and timely data are urgently needed to inform clinical care and public health policy. To facilitate accurate and timely information, enhancing the BORN Information System (BIS) to facilitate ongoing record linkage with

existing and new provincial data holdings including vaccination records and infectious disease reporting is needed in anticipation of/readiness for future infectious disease events/pandemics.

5) Data collection and knowledge transfer must be collaborative and integrated for maximum benefit.

## Learnings:

 Pregnant individuals had higher rates of illness, hospitalization and ICU admission associated with COVID-19 infection than non-pregnant individuals in the same age range. From March 1, 2020 – December 31, 2022, there were 20,682 pregnant individuals in Ontario who tested positive for SARS-CoV-2 during pregnancy. Most cases were diagnosed within the first 27 weeks of pregnancy (Table 1).

This total number is likely underreported due to a brief period when PCR testing was significantly reduced and when rapid antigen testing largely replaced PCR due to the vast numbers of cases in the general population (Omicron wave – Figure 1).

| Gestational age at diagnosis | (n=20,682)ª |
|------------------------------|-------------|
| Less than 14 weeks           | 7052        |
| 14-27 weeks                  | 5759        |
| 28-37 weeks                  | 2578        |
| 38-42 weeks                  | 4886        |
| Missing                      | 407         |

Table 1 - Gestational age at time of SARS CoV-2 positive testMarch 1, 2020, to December 31, 2022

<sup>a</sup> Total number of individuals with a positive SARS CoV-2 positive test during pregnancy.

Figure 1 –COVID-19 variants in Ontario March 1, 2020, to March 31, 2022



**Note:** Time periods for variants of concern in Ontario were retrieved from Science Table COVID-19 Advisory for Ontario: Ontario Dashboard.<sup>1a</sup> There were 182 additional COVID-19 cases in pregnancy, but the date of infection was not reported. These cases have been excluded from the line graph.

Accessibility Link – Long Description Figure 1

<sup>&</sup>lt;sup>1</sup> Science Table COVID-19 Advisory for Ontario: Ontario Dashboard available at <u>https://covid19-</u> <u>sciencetable.ca/ontario-dashboard/?msclkid=96c174f8d07611ecbd1a002f317661d6</u> Accessed May 30, 2022





**Note:** Time periods for variants of concern in Ontario were retrieved from Science Table COVID-19 Advisory for Ontario: Ontario Dashboard.<sup>1</sup>

<sup>a</sup> Severe COVID-19 cases include anyone with any of the following: hospitalization, ICU admission, death, pneumonia, sepsis, respiratory failure, acute respiratory distress syndrome, heart failure, septic shock, coagulopathy, disseminated intravascular coagulopathy, renal failure, liver dysfunction, or ventilatory support.

<sup>b</sup> There were 12 additional severe cases in pregnancy, but the date of infection was not reported. These cases have been excluded from the line graph.

Accessibility Link – Long Description Figure 2

From March 1, 2020, to December 31, 2022, 97% of pregnant individuals with COVID-19 experienced mild to moderate disease and 3% experienced severe disease (Table 2 and Figure 2). More severe illness in pregnancy was associated with the Wild/Delta waves and the Omicron waves.

| Maternal<br>Comorbidities | General<br>Pregnant<br>Population | Mild and<br>Moderate<br>COVID-19 | Severe COVID-<br>19<br>(n=679) | Total COVID-19<br>(n=20,682) |
|---------------------------|-----------------------------------|----------------------------------|--------------------------------|------------------------------|
| Diabetes                  | (1=286,419)<br>29,823<br>(10.4%)  | 1988 (9.9%)                      | 98 (14.4%)                     | 2086 (10.1%)                 |
| Hypertension              | 20,098 (7.0%)                     | 1319 (6.6%)                      | 67 (9.9%)                      | 1386 (6.7%)                  |

| Table 2 - Frequency of maternal comorbidities according to COVID-19 severity |
|------------------------------------------------------------------------------|
| March 1, 2020, to December 31, 2022                                          |

<sup>a</sup> Includes pre-existing diabetes and hypertension, as well as diabetes and hypertension during pregnancy.

<sup>b</sup> Less than 1% of individuals overall had pre-existing cardiovascular disease or asthma, thus stratification by COVID-19 disease severity was not possible due to small cell counts.

A larger proportion of pregnant individuals with severe COVID-19 had comorbidities compared to those with mild to moderate disease, as well as the general pregnant population during the same period (Table 2).

Of the 20,682 pregnancies with COVID-19, 616 (3.0%) pregnant individuals were hospitalized due to COVID-19 with the majority (528 individuals) having a general admission and 88 individuals being admitted to an intensive care unit. A total of 6 individuals (0.03%) died (Table 3). These proportions are higher than those of the general female population in Ontario aged 20-39 who were hospitalized due to COVID-19 illness or complications (hospitalization rate = 0.1%)<sup>2</sup>. Overall, respiratory complications were the most prevalent SARS-CoV-2 complications with pneumonia being the most common (Table 4). Length of hospital stay, in days, due to COVID-19 illness and/or complications varied considerably (mean=5.2, median=2, std=11.6) (Table 5). Three-quarters of hospitalized individuals were admitted for 5 days or less (data not shown), and a small number of pregnant individuals were admitted to hospital for 30 days or more due to COVID-19. There was far less variability for pregnant individuals without COVID-19 who were admitted to hospital for birth during the same period; they were primarily admitted to hospital for two days or less (mean=1.9, median=1.7, std=0.9).

<sup>&</sup>lt;sup>2</sup> Ontario COVID-19 Data Tool available at <u>https://www.publichealthontario.ca/en/data-and-analysis/infectious-disease/covid-19-data-surveillance/covid-19-data-tool?tab=maps%20</u> Accessed June 2, 2022.

#### Table 3 - Outcomes for all pregnant individuals with COVID-19

March 1, 2020, to December 31, 2022

| Outcome                      | (n=20,682) <sup>a</sup> |
|------------------------------|-------------------------|
| No hospitalization           | 20,066 (97.0%)          |
| Hospitalization <sup>b</sup> | 616 (3.0%)              |
| General admission            | 528 (2.6%)              |
| ICU admission                | 88 (0.4%)               |
| Death                        | 6 (0.03%)               |

<sup>a</sup> Total number of individuals with a COVID-19 during pregnancy.

<sup>b</sup> Hospitalizations due to COVID-19.

Table 4 - COVID-19 complications and use of ventilator support among pregnant individualsMarch 1, 2020, to December 31, 2022

| Complications                                    | (n= 20,682) <sup>a</sup> |
|--------------------------------------------------|--------------------------|
| Pneumonia                                        | 112 (0.54%)              |
| Sepsis                                           | 12 (0.06%)               |
| Respiratory failure                              | 25 (0.12%)               |
| Acute respiratory distress<br>syndrome           | 29 (0.14%)               |
| Liver dysfunction                                | 10 (0.05%)               |
| Coagulopathy                                     | 12 (0.06%)               |
| Other complications <sup>b</sup>                 | 24 (0.12%)               |
| Ventilatory support <sup>c</sup>                 | 45 (0.22%)               |
| Severe COVID-19 during<br>pregnancy <sup>d</sup> | 679 (3.28%)              |

<sup>a</sup> Total number of pregnant individuals with COVID-19 during pregnancy, regardless of disease severity.

<sup>b</sup> Some complications have been grouped together due to small cell counts. Other complications include heart failure, renal failure, septic shock, and disseminated intravascular coagulopathy.

<sup>c</sup> Ventilatory support has been grouped together due to small cell counts. It includes extracorporeal membrane oxygenation (ECMO), non-invasive ventilation and invasive ventilation.

<sup>d</sup> Includes anyone with any of the following: hospitalization, ICU admission, death, pneumonia, sepsis, respiratory failure, acute respiratory distress syndrome, heart failure, septic shock, coagulopathy, disseminated intravascular coagulopathy, renal failure, liver dysfunction, or ventilatory support. These are not mutually exclusive conditions.

# Table 5 - Length of stay (LOS) in hospital due to COVID-19 versus average postpartum LOS in days

| Length of Stay          | Mean | Median | Standard deviation | Minimum | Maximum |
|-------------------------|------|--------|--------------------|---------|---------|
| Average postpartum      | 1.9  | 1.7    | 0.9                | < 1     | 8       |
| LOS for all pregnancies |      |        |                    |         |         |
| COVID-19                | 5.2  | 2      | 11.6               | < 1     | 181     |

March 1, 2020, to December 31, 2022<sup>a</sup>

<sup>a</sup> Includes vaginal and cesarean deliveries during the same period.

# 2) Newborns of pregnant individuals with COVID -19 were more likely born preterm (<37 weeks' gestation) compared to the general population of pregnant individuals.

Of the 19,242 infants born to an individual with a COVID-19 diagnosis during pregnancy and where a birth has occurred as of December 31, 2022, 74 (0.4%) were stillbirths (Table 6), and the majority (66.4%) were born vaginally (Table 7). In comparison, the stillbirth rate for the 5-year period pre-pandemic in Ontario was 0.47%<sup>3</sup>. Of the livebirths, 8.4% were born preterm (before 37 completed weeks) (Table 8). The typical preterm birth rate in Ontario is 7.7% and varies by region from 5.6% - 12.1%<sup>4</sup>. Moreover, 7.0% of infants born to mothers with COVID-19 during pregnancy had a birth weight of less than 2500 grams (Table 9). Neonatal intensive care unit (NICU) admission occurred for 2507 (13.1%) newborns which is similar to the average rate of 13.2% found in a study during the early part of the pandemic<sup>5</sup>.

Due to limited SARS-CoV-2 testing performed on newborns at birth in Ontario, SARS-CoV-2 infection in newborns is not reported. However, a study conducted in Ontario<sup>6</sup> reported that vertical transmission (from pregnant individual to infant) was unlikely.

doi:10.1001/jamanetworkopen.2021.20150. Available at

<sup>&</sup>lt;sup>3</sup> Stillbirths in Ontario 2021. Ottawa, Ontario, 2021 available at <u>https://www.bornontario.ca/en/news/stillbirths-in-ontario-2021.aspx</u>

<sup>&</sup>lt;sup>4</sup> One in a Million. BORN Ontario Biennial Report 2016-2018. Ottawa, Ontario, 2018. Ontario COVID-19 Data Tool available at <u>https://www.bornontario.ca/en/publications/resources/Documents/BORN-Biennial-Report-Feb-2019.pdf</u>

<sup>&</sup>lt;sup>5</sup> Roberts NF, Sprague AE, Taljaard M, Fell DB, Ray JG, Tunde-Byass M, et al. Maternal-Newborn Health System Changes and Outcomes in Ontario, Canada, During Wave 1 of the COVID-19 Pandemic-A Retrospective Study. J Obstet Gynaecol Can. 2022 Jun;44(6):664-674. doi: 10.1016/j.jogc.2021.12.006. Epub 2021 Dec 29. PMID: 34973435; PMCID: PMC8716144. Available at

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716144/?report=reader

<sup>&</sup>lt;sup>6</sup> Fitzpatrick T, Wilton AS, Chung H, Guttmann A. SARS-CoV-2 Infection Among Maternal-Infant Dyads in Ontario, Canada. JAMA Netw Open. 2021;4(8):e2120150. Published 2021 Aug 2.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353536/?report=reader

# Table 6 – Birth outcomes associated with COVID-19 during pregnancy March 1, 2020, to December 31, 2022<sup>c</sup>

| Birth Outcome                                   | (n=19,242)ª    |
|-------------------------------------------------|----------------|
| Live birth                                      | 19,168 (99.6%) |
| Stillbirth at ≥20wks or<br>>500gms <sup>b</sup> | 74 (0.4%)      |

<sup>a</sup> Total number of infants delivered (including live births and stillbirths).

<sup>b</sup> Spontaneous stillbirth may have occurred during the antepartum or intrapartum period.

<sup>c</sup>Due to normal delays in reporting of birth outcomes in the registry, there are 905 missing birth records.

| Table 7 - Mode of delivery associated with COVID-19 during pregnancy |
|----------------------------------------------------------------------|
| March 1, 2020, to December 31, 2022                                  |

| Mode of Delivery                                               | Number of births with<br>COVID-19 diagnosis<br>during pregnancy<br>(n=19,242) <sup>a</sup> | Number of births<br>without COVID-19<br>diagnosis during<br>pregnancy<br>(n=267,177) |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Spontaneous vaginal                                            | 11,304 (58.8%)                                                                             | 162,629 (60.9%)                                                                      |
| Assisted vaginal (forceps or vacuum)                           | 1465 (7.6%)                                                                                | 22,389 (8.4%)                                                                        |
| Induced or spontaneous<br>labour ending in cesarean<br>section | 3073 (16.0%)                                                                               | 39,156 (14.7%)                                                                       |
| No labour - cesarean section                                   | 3394 (17.6%)                                                                               | 43,009 (16.1%)                                                                       |
| Mode of delivery missing                                       | 6 (0.03%)                                                                                  | 0 (0.0%)                                                                             |

<sup>a</sup> Total number of infants delivered (including live births and stillbirths).

Table 8 - Gestational age at birth for liveborn infants to pregnant individuals with COVID-19 during pregnancy

March 1, 2020, to December 31, 2022

| Gestational Age   | (n=19,168)    |
|-------------------|---------------|
| < 28 weeks        | 85 (0.4%)     |
| 28 - 31 weeks     | 128 (0.7%)    |
| 32-33 weeks       | 202 (1.1%)    |
| 34-36 weeks       | 1202 (6.3%)   |
| ≥ 37 weeks (term) | 17,551(91.6%) |

# Table 9 - Birth weight of liveborn infants to pregnant individuals with COVID-19 duringpregnancy

March 1, 2020, to December 31, 2022

| Birth Weight | (n=19,168)     |
|--------------|----------------|
| < 2500g      | 1334 (7.0%)    |
| 2500 - 3999g | 15,790 (82.4%) |
| ≥ 4000g      | 1708 (8.9%)    |
| Missing      | 336 (1.8%)     |

3) Vaccination against COVID-19 administered during pregnancy has *NOT* been associated with an increased risk of adverse pregnancy or birth outcomes. Nevertheless, COVID-19 vaccine coverage in the pregnant population remained lower than in the general female population of reproductive age.

BORN partnered with Dr. Deshayne Fell (Epidemiologist - University of Ottawa) and a group of international experts to study the effects of COVID-19 vaccination on pregnant individuals and newborns. The scientific papers are excerpted here:

Receiving a primary COVID-19 vaccine series (dose 1 and 2) during pregnancy was *not associated* with any increased risk of adverse pregnancy or birth outcomes (e.g., postpartum hemorrhage, chorioamnionitis, cesarean delivery, NICU admission, 5-minute Apgar score <7, preterm birth (<37 weeks), small-for-gestational-age at birth or</li>

stillbirth)<sup>7,8</sup>. The results did not differ according to the number of COVID-19 doses (dose 1 and/or 2) received during pregnancy, trimester when vaccination occurred, and type of mRNA vaccine product.

- Receipt of a third dose (first booster dose) of COVID-19 vaccine during pregnancy was
  *not associated* with any increased risk of adverse maternal, fetal, and neonatal
  outcomes (e.g., placental abruption, chorioamnionitis, postpartum hemorrhage,
  cesarean delivery, stillbirth, preterm birth (<37 weeks), NICU admission, 5-minute Apgar
  score <7, or small-for-gestational-age at birth). There was no difference in subgroup
  analyses by mRNA vaccine product and trimester when dose 3 was received. (The study
  is currently in press with BMJ Medicine).</li>
- COVID-19 vaccine coverage with at least 1 dose was lower among pregnant individuals than in the general female population of reproductive age in Ontario<sup>9</sup>. Similarly, among pregnant individuals who were not yet vaccinated at the time of giving birth, COVID-19 vaccination after pregnancy also remained lower than vaccine coverage in the general female population in ON<sup>10</sup>.
- The results suggested that there is a subgroup of pregnant individuals (e.g., those in younger age groups, those reporting smoking and substance use during pregnancy, and those living in a rural area or a neighbourhood with lower income and higher material deprivation) who were less likely to get vaccinated against COVID-19 during pregnancy<sup>9</sup> and even after giving birth<sup>10</sup>.

In summary, COVID-19 illness during pregnancy has been associated with an increased risk of hospital and intensive care unit admission, pregnancy complications, and adverse birth outcomes (e.g., preterm birth). It has also been shown that COVID-19 vaccination during

<sup>8</sup> Fell DB, Dimanlig-Cruz S, Regan AK, Håberg SE, Gravel CA, Oakley L, et al. Risk of preterm birth, small for gestational age at birth, and stillbirth after covid-19 vaccination during pregnancy: population based retrospective cohort study. BMJ. 2022 Aug 17;378:e071416. doi: 10.1136/bmj-2022-071416. PMID: 35977737; PMCID: PMC9382031. Available at <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382031/?report=reader">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382031/?report=reader</a>

<sup>9</sup> Fell DB, Török E, Sprague AE, Regan AK, Dhinsa T, Alton GD, et al. Temporal trends and determinants of COVID-19 vaccine coverage and series initiation during pregnancy in Ontario, Canada, December 2020 to December 2021: A population-based retrospective cohort study. Vaccine. 2023 Mar 3;41(10):1716-1725. doi: 10.1016/j.vaccine.2023.01.073. Epub 2023 Feb 3. PMID: 36759282; PMCID: PMC9894778. Available at

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894778/?report=reader

 <sup>&</sup>lt;sup>7</sup> Fell DB, Dhinsa T, Alton GD, Török E, Dimanlig-Cruz S, Regan AK, et al. Association of COVID-19 Vaccination in Pregnancy With Adverse Peripartum Outcomes. JAMA. 2022 Apr 19;327(15):1478-1487. doi: 10.1001/jama.2022.4255. PMID: 35323842; PMCID: PMC8949767. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949767/?report=reader

<sup>&</sup>lt;sup>10</sup> Török E, Dhinsa T, Dimanlig-Cruz S, Alton GD, Sprague AE, Dunn SI, et al. Temporal trends and determinants of COVID-19 vaccine series initiation after recent pregnancy. Hum Vaccin Immunother. 2023 May 30:2215150. doi: 10.1080/21645515.2023.2215150. Available at: <u>https://pubmed.ncbi.nlm.nih.gov/37249316/</u>

pregnancy effectively reduces the risk of COVID-19 infection in pregnant individuals and their newborn infants. BORN's contribution to this work adds to the growing body of evidence that COVID-19 vaccination during pregnancy is not associated with a higher risk of adverse maternal and birth outcomes. These findings can help inform public health strategies to increase COVID-19 vaccine acceptance and coverage in the pregnant population, especially among certain subgroups.

There is a report series with additional details on all the vaccination studies available on the BORN Ontario website<sup>11</sup>.

4) During public health emergencies, accurate and timely data are urgently needed to inform clinical care and public health policy. To facilitate accurate and timely information, enhancing the BORN Information System (BIS) to facilitate ongoing record linkage with existing and new provincial data holdings including vaccination records and infectious disease reporting is needed in anticipation of/readiness for future infectious disease events/pandemics.

Pregnant individuals and newborns are vulnerable populations – being able to easily create and enable data collection screens that link to pregnancy and birth outcomes would be valuable and would facilitate data sharing across jurisdictions to help strengthen conclusions. While COVID-19 is the longest pandemic we have faced so far, there have been other instances in the last 20 years of important infectious diseases that impacted pregnant individuals and newborns (i.e., 2009 A/H1N1 influenza pandemic, severe acute respiratory syndrome [SARS], Zika virus, and Middle East respiratory syndrome). In each case, BORN was consulted and where possible mounted a data collection strategy, but with considerable time and resource efforts. In the case of COVID-19, the development and launch of BORN's data collection strategy took weeks, and sites (birthing hospitals and midwifery practice groups) had to be recruited and educated on how to complete and securely submit the fillable PDF forms to the BIS, causing further delays in obtaining crucial data on COVID-19 infection at a time when little was known about its effect on pregnant individuals and their unborn child. Additionally, we had to do complex linkages between multiple datasets (laboratory data, vaccination data, census data) and outcome data in the BIS.

In a recent publication on COVID-19 by the Ministry of Health, Dr. Kieran Moore (the Chief Medical Officer of Health) stated that *Ontario needs timely, accurate, and detailed surveillance information as well as ready access to scientific expertise to enhance its capacity to detect and monitor disease threats; and guide decisions about public health* 

<sup>&</sup>lt;sup>11</sup> BORN COVID-19 Vaccination During Pregnancy in Ontario. <u>https://www.bornontario.ca/en/whats-happening/covid-19-vaccination-during-pregnancy-in-ontario.aspx</u> Accessed June 2, 2022.

measures when a threat reaches a certain magnitude<sup>12</sup>. While BORN participated in this type of surveillance and scientific work, much of the effort would have been reduced with linked data available in the BIS. BORN needs a flexible, modular, and ready-to-go data collection system for times when special data collection is warranted (recognizing that any new data collection would have to go through the approval process at BORN). Additionally, to enhance future surveillance efforts, it would be helpful to have an ongoing feed of data from the provincial repositories (e.g., illness, vaccines, public health reportable diseases) so that we could identify signals that these exposures might be causing issues in the pregnant or breastfeeding or newborn populations. We have learned through SARS and now COVID-19 that pregnant and breastfeeding individuals have different outcomes from the general population and population-specific data are required for evidence-informed decisions about care.

In the United Kingdom (UK), the UK Obstetric Surveillance System (UKOSS) is an excellent example of a 'just-in-time' solution<sup>13</sup>. This system, created years ago, enabled the UK to rapidly respond with data collection on COVID-19 in pregnancy as soon as the pandemic was declared to help guide care providers<sup>14</sup>. Many of the first studies on COVID-19 in pregnancy came from the UK. In the event of a future 'emerging health issue' (which is not a question of 'if', but more 'when'), BORN Ontario wants to be better prepared to collect data by having a ready-made generic and nimble encounter in the BIS that could be 'activated' when required to help to facilitate care in a more expeditious manner. It would ensure timely data collection to inform policymakers, healthcare providers and the pregnant population.

# 5) Data collection and knowledge transfer must be collaborative and integrated for maximum benefit.

BORN would not have been able to do the COVID-19 surveillance including the research activities on COVID-19 vaccination in pregnancy without the tremendous collaboration of government and public health, hospitals, midwifery practice groups, clinical care providers, provincial laboratory and vaccination databases, perinatal and professional practice networks, national research groups, and research funders. We are incredibly grateful for the willingness of people who had a 'get it done' attitude despite the growing health care

 <sup>&</sup>lt;sup>12</sup> UK Obstetric Surveillance System (UKOSS) available at <u>https://www.npeu.ox.ac.uk/ukoss</u> Accessed June 2, 2022.
 <sup>13</sup> Knight M, Brocklehurst P, O'Brien P, Quigley MA, Kurinczuk JJ. Planning for a cohort study to investigate the impact and management of influenza in pregnancy in a future pandemic. Southampton (UK): NIHR Journals Library; 2015 Mar. PMID: 25834863. Available at <u>https://pubmed.ncbi.nlm.nih.gov/25834863/</u>

<sup>&</sup>lt;sup>14</sup> Lawrence LM, Bishop A, Curran J. Integrated Knowledge Translation with Public Health Policy Makers: A Scoping Review. Healthc Policy. 2019 Feb;14(3):55-77. doi: 10.12927/hcpol.2019.25792. PMID: 31017866; PMCID: PMC7008688. Available at <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008688/?report=reader</u>

system challenges as the pandemic progressed.

Integrated knowledge transfer (IKT) was a crucial component of the work we did and was critical to helping advise policy makers on care practices. Lawrence and colleagues<sup>15</sup> define IKT as the engagement of knowledge users (e.g., policy makers, clinicians, patients) as active participants in the research process. We held regular meetings with our clinical, public health, and research colleagues across the province to plan our surveillance and research activities. We involved the regional perinatal networks and the Provincial Council of Maternal Child Health who assisted in reaching out to care providers, and we worked collaboratively with data contributors from clinical, public health, and laboratory sites to keep them engaged with the process and outcomes. Lastly, we shared results widely, both in scientific forms and in summaries and graphics developed for the general public.

In a global pandemic, both national and international collaborations are crucial. To have comparable results, we worked with the CAN-COVID Preg network (see website: <a href="https://ridprogram.med.ubc.ca/cancovid-preg/">https://ridprogram.med.ubc.ca/cancovid-preg/</a>)<sup>15</sup> to standardize data fields we collected, and we also collaborated with experts in maternal immunization from different countries.

## Summary:

BORN's primary mandate as a Registry is to facilitate and improve care. During the pandemic we certainly met this mandate by providing valuable information about the effect of COVID-19 on pregnant individuals and newborns. This information helped care providers and regional networks draft recommendations for clinical care, helped policy makers enact standards, helped public health with population-specific information, and helped Ontario families understand their options. Furthermore, once COVID-19 vaccines became available, our work contributed to guide all these groups make evidence-informed decisions regarding vaccination.

This work was truly a collaborative effort. BORN could not have done this without constant and targeted collaboration and communication. We also needed and received rapid help from government partners who provided access to laboratory and vaccination data.

We thank everyone for their efforts (full list on next page). While no one wants to endure another pandemic like this, it is reassuring that for the maternal-child population in Ontario we have an effective model of collaboration that allows us to produce data and information needed to respond. We intend to build on this and take the lessons learned to become even more effective in the future.

<sup>&</sup>lt;sup>15</sup> Money DM, CANCOVID-Preg Network. *Canadian Surveillance of COVID-19 in Pregnancy: Epidemiology, Maternal and Infant Outcomes Report #3*. Published 2021. Accessed March 9, 2021. Available at: <u>http://med-fom-ridprogram.sites.olt.ubc.ca/files/2021/02/CANCOVID Preg-report-3-ON-BC-AB-QC-MB- 25Feb2021 Final.pdf</u>

BORN Ontario thanks the following people and organizations for their assistance with designing our data collection, data contributions and helping to share the information from the data analysis.

#### Data Collection – BORN COVID-19 Research Original Investigators:

| Investigator Name     | Affiliation                            |
|-----------------------|----------------------------------------|
| Dr. Deshayne Fell     | University of Ottawa                   |
| Dr. Gillian Alton     | BORN Ontario                           |
| Dr. Jon Barrett       | Sunnybrook Hospital                    |
| Dr. Jason Brophy      | Children's Hospital of Eastern Ontario |
| Dr. Darine El-Chaar   | The Ottawa Hospital                    |
| Dr. Deborah Money     | University of British Columbia         |
| Dr. Joel Ray          | St. Michael's Hospital                 |
| Dr. Prakeshkumar Shah | Mt. Sinai Hospital & SickKids          |
| Dr. John Snelgrove    | Mt. Sinai Hospital                     |
| Dr. Ann Sprague       | BORN Ontario                           |
| Dr. Nisha Thampi      | Children's Hospital of Eastern Ontario |
| Dr. Mark Walker       | The Ottawa Hospital                    |
| Dr. Jonathan Zipursky | Sunnybrook Hospital                    |

### Steering Committee Members of the COVID-19 Immunity Task Force-Funded COVID-19 Vaccination in Pregnancy Project:

| Name                  | Affiliation           |
|-----------------------|-----------------------|
| Dr. Deshayne Fell     | University of Ottawa  |
| Dr. Gillian Alton     | BORN Ontario          |
| Tavleen Dhinsa        | BORN Ontario          |
| Sheryll Dimanlig-Cruz | BORN Ontario          |
| Dr. Eszter Török      | BORN Ontario          |
| Liam Bruce            | BORN Ontario          |
| Dr. Ann Sprague       | BORN Ontario          |
| Dr. Sandra Dunn       | BORN Ontario          |
| Shelley Dougan        | BORN Ontario          |
| Dr. Lise Bisnaire     | BORN Ontario          |
| lan Joiner            | BORN Ontario          |
| Dr. Jeffrey Kwong     | ICES, Toronto         |
| Dr. Shannon McDonald  | University of Alberta |
| Dr. Nannette Okun     | University of Toronto |
| Dr. Darine El-Chaâr   | Ottawa Hospital       |

\*The project was supported by funding from the Public Health Agency of Canada, through the Vaccine Surveillance Reference Group and the COVID-19 Immunity Task Force (CITF).

\*\*We also acknowledge several other co-authors who were not members of the Steering Committee but contributed to individual studies.

#### Data Contributors:

Ontario Hospitals with Maternal-Newborn Units and their data entry personnel Midwifery Practice Groups in Ontario Ministry of Health (Provided access to the PCR Laboratory test results) Ministry of Health COVAX-ON (Provided regular cuts of data from the vaccine registry)

#### **Knowledge Translation Partners:**

Association of Ontario Midwives Canadian Fertility and Andrology Society CAN-COVID Pregnancy Network COVID-19 Immunity Task Force Ontario Public Health Association and Public Health Units Prenatal Screening Ontario The Provincial Council for Maternal Child Health (PCMCH) and the Regional Perinatal Networks of Ontario Society of Obstetricians and Gynaecologists of Canada

#### BORN Team Members involved with data extraction, analysis and sharing:

| Name                   | Affiliation                                   |
|------------------------|-----------------------------------------------|
| Dr. Deshayne Fell      | BORN Affiliate Agent and University of Ottawa |
| Dr. Gillian Alton      | BORN Ontario - Epidemiologist                 |
| Dr. Ann Sprague        | BORN Ontario - Project Advisor                |
| Dr. Eszter Török       | BORN Ontario - Research Coordinator           |
| Carolina Lavin Venegas | BORN Research Coordinator                     |
| Emmilie Lindon         | BORN Research Coordinator                     |
| Anne Trinneer          | BORN Data Request and Research Coordinator    |
| Dr. Sandra Dunn        | BORN Project Advisor                          |
| lan Joiner             | BORN Manager                                  |
| Todd Harrold           | BORN Former Privacy Officer                   |
| Tammy Kuepfer          | BORN Communications Coordinator               |
| Sheryll Dimanlig-Cruz  | BORN Data Analyst                             |
| Tavleen Dhinsa         | BORN Data Analyst                             |
| Liam Bruce             | BORN Data Analyst                             |
| Mike Kotuba            | BORN Senior Technical Architect               |
| Dan Collins            | BORN PMO Manager                              |

| Shelley Dougan     | BORN and Prenatal Screening Ontario Director |
|--------------------|----------------------------------------------|
| Rebecca Johnston   | BORN Regional Coordinator                    |
| Catherine Lombardo | BORN Regional Coordinator                    |
| Jennifer Mercer    | BORN Regional Coordinator                    |
| Allison Wood       | BORN Regional Coordinator                    |
| Kaamel Hafizi      | BORN Regional Coordinator                    |
| Melanie Daboud     | BORN Regional Coordinator                    |
| Emily Reeson       | BORN Regional Coordinator                    |
| Janet Brownlee     | BORN Clinical Content Specialist             |
| Annabel Cope       | BORN Clinical Content Specialist             |
| Paula Morrison     | BORN Clinical Content Specialist             |
| Dana-Marie Radke   | BORN Clinical Content Specialist             |

We may have inadvertently missed people who provided advice or direction to our project. We apologize, but please know your contribution was valued.

## **Accessibility Link – Long Description for Figure 1**

Figure 1 is a line graph with the y-axis representing the SARS-CoV-2 positive cases in pregnancy by month on the x-axis from March 1, 2020 to March 31, 2022. There are 4 vertical lines representing the time periods of the prominent SARS-CoV-2 variants that were circulating in Ontario. The wild type variants were circulating from the start of the pandemic until April 2021, the delta variant was present starting in May 2021, the alpha variant was present until 2021 and omicron has been circulating since December 2021.

Table 1: Number of reported SARS-CoV-2 positive cases during pregnancy by month from March 1, 2020 – March 31, 2022.

| Date reported | Total number of COVID-19 cases in pregnancy |
|---------------|---------------------------------------------|
| MAR2020       | 29                                          |
| APR2020       | 77                                          |
| MAY2020       | 72                                          |
| JUN2020       | 40                                          |
| JUL2020       | 42                                          |
| AUG2020       | 39                                          |
| SEP2020       | 89                                          |
| ОСТ2020       | 226                                         |
| NOV2020       | 367                                         |
| DEC2020       | 672                                         |
| JAN2021       | 786                                         |
| FEB2021       | 327                                         |
| MAR2021       | 516                                         |
| APR2021       | 1142                                        |
| MAY2021       | 692                                         |
| JUN2021       | 156                                         |
| JUL2021       | 69                                          |
| AUG2021       | 190                                         |
| SEP2021       | 245                                         |
| OCT2021       | 177                                         |
| NOV2021       | 224                                         |
| DEC2021       | 1748                                        |
| JAN2022       | 4505                                        |
| FEB2022       | 1473                                        |

| MAR2022 | 1197 |
|---------|------|
|---------|------|

Return to Figure 1 on page 3.

## Accessibility Link – Long Description for Figure 2

Figure 2 is a line graph with the y-axis representing the number of reported severe COVID-19 cases in pregnancy by month on the x-axis from March 1, 2020 to March 31, 2022. There are 4 vertical lines representing the time periods of the prominent SARS-CoV-2 variants that were circulating in Ontario. The wild type variants were circulating from the start of the pandemic until April 2021, the delta variant was present starting in May 2021, the alpha variant was present until 2021 and omicron has been circulating since December 2021.

Table 1: Number of reported severe COVID-19 cases during pregnancy by month from March 1, 2020 – March 31, 2022.

| Date reported | Number of severe COVID-19 cases in pregnancy |
|---------------|----------------------------------------------|
| MAR2020       | < 6                                          |
| APR2020       | 6                                            |
| MAY2020       | < 6                                          |
| JUN2020       | 0                                            |
| JUL2020       | < 6                                          |
| AUG2020       | < 6                                          |
| SEP2020       | < 6                                          |
| ОСТ2020       | 7                                            |
| NOV2020       | 15                                           |
| DEC2020       | 28                                           |
| JAN2021       | 25                                           |
| FEB2021       | 14                                           |
| MAR2021       | 28                                           |
| APR2021       | 93                                           |
| MAY2021       | 60                                           |
| JUN2021       | 13                                           |
| JUL2021       | 6                                            |
| AUG2021       | 18                                           |
| SEP2021       | 15                                           |
| OCT2021       | 16                                           |
| NOV2021       | 13                                           |
| DEC2021       | 33                                           |

| JAN2022 | 77 |
|---------|----|
| FEB2022 | 35 |
| MAR2022 | 29 |

Return to Figure 2 on page 4.